Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.

Identifieur interne : 000A89 ( Main/Exploration ); précédent : 000A88; suivant : 000A90

Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.

Auteurs : Mariette Bedhomme [France] ; Mirko Zaffagnini ; Christophe H. Marchand ; Xing-Huang Gao ; Mathieu Moslonka-Lefebvre ; Laure Michelet ; Paulette Decottignies ; Stéphane D. Lemaire

Source :

RBID : pubmed:19847013

Descripteurs français

English descriptors

Abstract

Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of the glyoxylate cycle that allows growth on acetate as a sole source of carbon. The aim of the present study was to clarify the molecular mechanism of the redox regulation of Chlamydomonas ICL using a combination of biochemical and biophysical methods. The results clearly show that purified C. reinhardtii ICL can be inactivated by glutathionylation and reactivated by glutaredoxin, whereas thioredoxin does not appear to regulate ICL activity, and no inter- or intramolecular disulfide bond could be formed under any of the conditions tested. Glutathionylation of the protein was investigated by mass spectrometry analysis, Western blotting, and site-directed mutagenesis. The enzyme was found to be protected from irreversible oxidative inactivation by glutathionylation of its catalytic Cys(178), whereas a second residue, Cys(247), becomes artifactually glutathionylated after prolonged incubation with GSSG. The possible functional significance of this post-translational modification of ICL in Chlamydomonas and other organisms is discussed.

DOI: 10.1074/jbc.M109.064428
PubMed: 19847013
PubMed Central: PMC2794744


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.</title>
<author>
<name sortKey="Bedhomme, Mariette" sort="Bedhomme, Mariette" uniqKey="Bedhomme M" first="Mariette" last="Bedhomme">Mariette Bedhomme</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630</wicri:regionArea>
<wicri:noRegion>Bâtiment 630</wicri:noRegion>
<orgName type="university">Université Paris-Sud</orgName>
<placeName>
<settlement type="city">Orsay</settlement>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</author>
<author>
<name sortKey="Marchand, Christophe H" sort="Marchand, Christophe H" uniqKey="Marchand C" first="Christophe H" last="Marchand">Christophe H. Marchand</name>
</author>
<author>
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
</author>
<author>
<name sortKey="Moslonka Lefebvre, Mathieu" sort="Moslonka Lefebvre, Mathieu" uniqKey="Moslonka Lefebvre M" first="Mathieu" last="Moslonka-Lefebvre">Mathieu Moslonka-Lefebvre</name>
</author>
<author>
<name sortKey="Michelet, Laure" sort="Michelet, Laure" uniqKey="Michelet L" first="Laure" last="Michelet">Laure Michelet</name>
</author>
<author>
<name sortKey="Decottignies, Paulette" sort="Decottignies, Paulette" uniqKey="Decottignies P" first="Paulette" last="Decottignies">Paulette Decottignies</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19847013</idno>
<idno type="pmid">19847013</idno>
<idno type="doi">10.1074/jbc.M109.064428</idno>
<idno type="pmc">PMC2794744</idno>
<idno type="wicri:Area/Main/Corpus">000A67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A67</idno>
<idno type="wicri:Area/Main/Curation">000A67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A67</idno>
<idno type="wicri:Area/Main/Exploration">000A67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.</title>
<author>
<name sortKey="Bedhomme, Mariette" sort="Bedhomme, Mariette" uniqKey="Bedhomme M" first="Mariette" last="Bedhomme">Mariette Bedhomme</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630</wicri:regionArea>
<wicri:noRegion>Bâtiment 630</wicri:noRegion>
<orgName type="university">Université Paris-Sud</orgName>
<placeName>
<settlement type="city">Orsay</settlement>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</author>
<author>
<name sortKey="Marchand, Christophe H" sort="Marchand, Christophe H" uniqKey="Marchand C" first="Christophe H" last="Marchand">Christophe H. Marchand</name>
</author>
<author>
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
</author>
<author>
<name sortKey="Moslonka Lefebvre, Mathieu" sort="Moslonka Lefebvre, Mathieu" uniqKey="Moslonka Lefebvre M" first="Mathieu" last="Moslonka-Lefebvre">Mathieu Moslonka-Lefebvre</name>
</author>
<author>
<name sortKey="Michelet, Laure" sort="Michelet, Laure" uniqKey="Michelet L" first="Laure" last="Michelet">Laure Michelet</name>
</author>
<author>
<name sortKey="Decottignies, Paulette" sort="Decottignies, Paulette" uniqKey="Decottignies P" first="Paulette" last="Decottignies">Paulette Decottignies</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (genetics)</term>
<term>Algal Proteins (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Chlamydomonas reinhardtii (enzymology)</term>
<term>Chlamydomonas reinhardtii (genetics)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Isocitrate Lyase (genetics)</term>
<term>Isocitrate Lyase (metabolism)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Protein Processing, Post-Translational (physiology)</term>
<term>Protozoan Proteins (genetics)</term>
<term>Protozoan Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Chlamydomonas reinhardtii (enzymologie)</term>
<term>Chlamydomonas reinhardtii (génétique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Isocitrate lyase (génétique)</term>
<term>Isocitrate lyase (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (physiologie)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Protéines d'algue (génétique)</term>
<term>Protéines d'algue (métabolisme)</term>
<term>Protéines de protozoaire (génétique)</term>
<term>Protéines de protozoaire (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Algal Proteins</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Isocitrate Lyase</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Algal Proteins</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Isocitrate Lyase</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Chlamydomonas reinhardtii</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Chlamydomonas reinhardtii</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chlamydomonas reinhardtii</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chlamydomonas reinhardtii</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Isocitrate lyase</term>
<term>Protéines d'algue</term>
<term>Protéines de protozoaire</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Isocitrate lyase</term>
<term>Protéines d'algue</term>
<term>Protéines de protozoaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Maturation post-traductionnelle des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mass Spectrometry</term>
<term>Mutagenesis, Site-Directed</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Mutagenèse dirigée</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of the glyoxylate cycle that allows growth on acetate as a sole source of carbon. The aim of the present study was to clarify the molecular mechanism of the redox regulation of Chlamydomonas ICL using a combination of biochemical and biophysical methods. The results clearly show that purified C. reinhardtii ICL can be inactivated by glutathionylation and reactivated by glutaredoxin, whereas thioredoxin does not appear to regulate ICL activity, and no inter- or intramolecular disulfide bond could be formed under any of the conditions tested. Glutathionylation of the protein was investigated by mass spectrometry analysis, Western blotting, and site-directed mutagenesis. The enzyme was found to be protected from irreversible oxidative inactivation by glutathionylation of its catalytic Cys(178), whereas a second residue, Cys(247), becomes artifactually glutathionylated after prolonged incubation with GSSG. The possible functional significance of this post-translational modification of ICL in Chlamydomonas and other organisms is discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19847013</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>284</Volume>
<Issue>52</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.</ArticleTitle>
<Pagination>
<MedlinePgn>36282-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M109.064428</ELocationID>
<Abstract>
<AbstractText>Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of the glyoxylate cycle that allows growth on acetate as a sole source of carbon. The aim of the present study was to clarify the molecular mechanism of the redox regulation of Chlamydomonas ICL using a combination of biochemical and biophysical methods. The results clearly show that purified C. reinhardtii ICL can be inactivated by glutathionylation and reactivated by glutaredoxin, whereas thioredoxin does not appear to regulate ICL activity, and no inter- or intramolecular disulfide bond could be formed under any of the conditions tested. Glutathionylation of the protein was investigated by mass spectrometry analysis, Western blotting, and site-directed mutagenesis. The enzyme was found to be protected from irreversible oxidative inactivation by glutathionylation of its catalytic Cys(178), whereas a second residue, Cys(247), becomes artifactually glutathionylated after prolonged incubation with GSSG. The possible functional significance of this post-translational modification of ICL in Chlamydomonas and other organisms is discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bedhomme</LastName>
<ForeName>Mariette</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zaffagnini</LastName>
<ForeName>Mirko</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marchand</LastName>
<ForeName>Christophe H</ForeName>
<Initials>CH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Xing-Huang</ForeName>
<Initials>XH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moslonka-Lefebvre</LastName>
<ForeName>Mathieu</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Michelet</LastName>
<ForeName>Laure</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Decottignies</LastName>
<ForeName>Paulette</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lemaire</LastName>
<ForeName>Stéphane D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.3.1</RegistryNumber>
<NameOfSubstance UI="D007522">Isocitrate Lyase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="N">Algal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016825" MajorTopicYN="N">Chlamydomonas reinhardtii</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007522" MajorTopicYN="N">Isocitrate Lyase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19847013</ArticleId>
<ArticleId IdType="pii">M109.064428</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M109.064428</ArticleId>
<ArticleId IdType="pmc">PMC2794744</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Aug 30;1520(2):154-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11513957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Sep;57(Pt 9):1209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11526312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Feb;269(3):868-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2002 Apr;35(3):223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D588-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jan;71(2):520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):452-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 28;284(35):23364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):218-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2004 Sep;271(17):3481-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Oct;150(Pt 10):3393-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1989 Jul 15;261(2):431-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2673221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol B. 1990;95(3):431-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2184988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jul 19;346(6281):297-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1695714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 Apr;238(1-2):177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8479425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Feb;176(3):927-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8300547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Jan 28;235(4):1357-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8308900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Jan 1;305 ( Pt 1):239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7826335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Jun;28(3):487-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7632918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Oct 1;319 ( Pt 1):255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8870676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Nov 1;335(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Feb;33(3):381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9049260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Oct 1;198(1-2):165-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9370278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1997 Nov;35(5):267-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9462957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 May 27;1364(3):307-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 May 18;38(20):6699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1957 May 18;179(4568):988-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13430766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 May 31;44(21):7696-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15909984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Jul 1;66(13):6800-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):225-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17089213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Dec;6(24):6528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Jan;274(1):212-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 22;104(21):8743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17502599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1851-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:115-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 1;283(31):21571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18534986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 22;283(34):23062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2000 Aug;7(8):663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10932251</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Orsay</li>
</settlement>
<orgName>
<li>Université Paris-Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Decottignies, Paulette" sort="Decottignies, Paulette" uniqKey="Decottignies P" first="Paulette" last="Decottignies">Paulette Decottignies</name>
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
<name sortKey="Marchand, Christophe H" sort="Marchand, Christophe H" uniqKey="Marchand C" first="Christophe H" last="Marchand">Christophe H. Marchand</name>
<name sortKey="Michelet, Laure" sort="Michelet, Laure" uniqKey="Michelet L" first="Laure" last="Michelet">Laure Michelet</name>
<name sortKey="Moslonka Lefebvre, Mathieu" sort="Moslonka Lefebvre, Mathieu" uniqKey="Moslonka Lefebvre M" first="Mathieu" last="Moslonka-Lefebvre">Mathieu Moslonka-Lefebvre</name>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Bedhomme, Mariette" sort="Bedhomme, Mariette" uniqKey="Bedhomme M" first="Mariette" last="Bedhomme">Mariette Bedhomme</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19847013
   |texte=   Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19847013" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020